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80, Federal Republic of Germany 
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Abstract. Non-radiative decay in solids depends not only on the particular features of 
electron-phonon coupling but also on the spatial dissipation process of the energy into the 
host lattice. A theory is given in which the decay is handled as a generalised Bixon-Jortner 
process. This allows for a lattice dynamical Green function description, which is a well known 
computational option. The final result exhibits the interplay of three influences: accepting- 
mode coupling, promoting-mode coupling and phonon transport. This is made explicit in 
the calculation of prototypical examples. 

1. Introduction 

A huge amount of theoretical work has been devoted to the non-radiative transition 
problem. One main stream of investigation has been based on the paper of Huang and 
Rhys (1950). Later this has become known as the ‘adiabatic base’ approach, ascontrasted 
to the ‘static base’ approach which dates back to the work of Helmis (1956). For a 
broader background description we refer to the extensive article of Stoneham (1981). 
More recently the discrepancy between the ‘static’ and ‘adiabatic’ approaches has led to 
new theoretical activity (Gutsche 1982, Denner and Wagner 1983, 1984a, b, Bartram 
and Stoneham 1985, Wagner 1982, 1985a, b), which originally was initiated by Huang 
(1981) himself. 

The present work aims at illuminating an aspect of the non-radiative transition 
problem which up to now has played almost no role in the discussion. We start from 
the expectation that the local non-radiative decay process should depend on how the 
surrounding medium is able to administer the spatial dissipation of the energy, which 
has been transmuted from the electronic to the oscillatory subsystem. For example it 
appears conceivable that there may be bottleneck situations against such dissipation. 
Thus in our concept the local transport properties of phonons play the dominant role. 

In our study the decay process is handled as a Fano-Bixon-Jortner process, which 
is described in section 2. For convenience we assume the initial state to be the relaxed 
excited electronic state, although our formalism also allows for the treatment of 
unrelaxed initial states (Zavt et a1 1984). In section 3 the required phonon formalism is 
presented, which is needed to describe our electron-phonon model (section 4). The 
non-radiative decay is characterised by a peculiar ‘decay function’, which incorporates 
the interplay and competition of three-parameter sets (spatial extension of the pro- 
moting- and accepting-mode coupling, and phonon dispersion); this is given in section 
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5 .  In section 6 the application of our formalism is demonstrated by considering a one- 
dimensional lattice, and it is found (section 7) that the 'decay function' is of a form which 
is strongly related to a kind of spatial dissipation which was originally considered by 
Hamilton (1839). In section 8 we develop a moment method which allows a quick global 
analysis of the decay characteristics. This is used (section 9) to discuss the interplay and 
competing influences of the dynamical parameter sets. 

2. Modified Fan-Bixon-Jortner model 

As explained in the following sections, we shall describe the non-radiative decay process 
as a Fano (1961) mechanism in which a singular state 1s) decays into a quasi-continuum 
of states {In)}. This is incorporated in a Hamiltonian of the form 

H = ~ $ 0 )  ~s>(sl + X E$') In>(ni + C, (v, is)(nl + HC). (1) 
n n 

An exact solution of this problem has been derived by Bixon and Jortner (1968, 1969) 
for the special case E,(,o) = ne and V, = V. This solution later has been generalised in our 
previous paper (Wagner and Vazquez-Marquez 1988). The basic correlation function 
of the general solution of the time-dependent Schrodinger equation is shown to be 
( E  = 0,) 

(2) 
i "  

(Y(O)Y(t)) = g( d o  exp(-iot){[w + ie - E!') - S(w + is)]-' - [eel-') 
- m  

where the most natural initial state, which is the singular state is), 

IWo> = Is) (3) 
has been chosen. The self-energy function S(w)  is the crucial quantity for the decay and 
is given as 

It will also be the crucial object of our calculation. Its Fourier transformation defines 
the 'decay function' 

with the inversion 

S(w * iE) exp(iwt) = ~ 2 n i e ( t t )  exp(*et) F(t ) .  (6) ia 
For quick and direct physical insight it is convenient to introduce a moment analysis of 
the distribution 1 VJ2, where the moments are given as follows: 

M ,  = (E$o))rlVn12 
n 

which may be traced back to F(t) (see equation (5)) as its generating function: 

(7) 
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or 
M ,  = lim {[d/(i dt)]' F(t)}. 

I' 0 
(9) 

If we content ourselves with the calculation of the first three moments, we may introduce 
a suitable analytical form for F(t), which is characterised by three parameters, e.g. 

F(t) = MO exp(iwot) exp(-yItl)(l + Y l 4  Y > O  (10) 
which yields 

(11) S(w k ic) = M o ( o  - wo i 2iy)/(o - W O  * iy)* 
where w0 and y are given by 

WO = M * / M o  
W ;  + y 2  = M,/M,.  

In the following we shall employ these formulae for a global analysis. 

3. Phonon dynamics 

We consider an oscillatory system with a Hamiltonian 

H p h  = g 2 p i  + 4 2 v t n , n x m X n  
m m.n 

where P,, X, designate the mass-reduced Cartesian coordinates. The Hamiltonian (14) 
is diagonalised if normal coordinates {Pk, Qk} are introduced: 

xm = 2 Vm(k)Qk 

with the inversion 

p m  = q;(k)Pk k = 0, 2 1 ,  t 2 , .  . . ,  t N / 2  (15) 
k k 

where q,(k) are eigenvectors which satisfy the orthonormality and closure relations 

2 r~m(k)q; , (k)  = am.m, .  (18) 

Hph = 2 (pkp: + QiQkQk') 

k 

The linear transformation (15) transmutes the Hamiltonian (14) to 

(19) 
k 

where the quantities Qk and Vmn satisfy the sum rule CkQi = ZmVmm. 
Tie solution of the dynamical problem is given by the Heisenberg evolution operators 
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which in their structural form are identical with the classical operators. For the back- 
ground of this formulation we refer to the standard literature on lattice dynamics, e.g. 
to the books by Maradudin et a1 (1963), by Dederichs et al(l980) and by Bottger (1983). 
We introduce the Zubarev Green function (GF) Gk:n ( t )  = ( (X ,  ( t )X ,  (0)))r,a of the system 
(14) (see, e.g., Zubarev 1960, Stinchcombe 1978) 

1 
~ & ” ( t )  =  TO(+-^) E - qm(k)q,* ( k )  sin(Qkt) (22) 

k Q k  

and its Fourier transform 

For the imaginary part of (23) we then find that 

1 
= -+-E Vm(k)V,*(k)b(w - Q k ) .  (24) 

w k  

Employing the eigenvector normalisation (see equations (17) and (18)) we arrive at the 
formula 

where p(o )  designates the density of the oscillatory frequency distribution { Q k } .  It will 
be this formula which later plays a central role in our calculation. 

4. Electron-phonon model 

We consider an electronic Hilbert subspace of two states {Il), 12)}, and a Hamiltonian of 
the form 

H = (A + AS,)  I2)(2I f BS,(I2)(1/ + HC) + Hph(P, X )  (26) 

where Hph is the oscillatory Hamiltonian (see section 3). A and B characterise the 
coupling strengths to the ‘accepting’- and ‘promoting’-mode coordinates {Sa, S,}, 
respectively. These coordinates will be taken as the linear forms 

m m 
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where am(a) and am(b) are 'symmetry vectors' belonging to different irreducible rep- 
resentation of a local symmetry group. They obey the orthonormality relations 

m 

m m 

Insertion of equation (15) into equations (27) and (28) leads to the forms 

k m k 

k m 

with abbreviations 

The respective diagonal projections of the full Hamiltonian (26) onto the two electronic 
states thus read 

The latter amounts to an oscillatory Hamiltonian with displaced equilibrium positions 
{ - A  k / & : }  and may be expressed by means of a unitary transformation, which is defined 
by the displacement operator 

The vibrational wavefunctions of Hph = (l(H(1), i.e. those pertaining to the lower elec- 
tronic state [I), are given as 

whereas those of (21H/2), i.e. those pertaining to the upper electronic state 12), are 
displaced: 

I{mk})l2) = UDi{mk>)ll)* (42) 
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5. Decay function 

We handle the decay problem as a Fano-Bixon-Jortner problem, as explained in section 
2. That is, we consider a single vibrational state pertaining to the upper electronic level 
12) (specifically we choose the lowest of these states, 1 { 0 k } ) ( 2 ) ) ,  and we assume that this 
state completely decays into the quasi-continuous set of vibrational states (41) pertaining 
to the lower electronic level 11) via the promoting-mode interaction. We thus refrain 
from considering a secondary decay process back into the quasi-continuous vibrational 
set pertaining to the upper electronic level 1 2 ) .  

Referring to the formalism of section 2 we make the identifications 

Is>* 1 2 ) I { o k } ) ( 2 )  = 12)UDI{ok})(l) (43) 

In)+ / I ) I { m k } ) ( l )  (44) 

E;') -+ Q k m k  E (46) 

v, + B ( { o k } l ( i )  u ~ ( p k ) S , f < Q k > l { m k } ) c i )  (47) 

k 

where mk is the quantum number of the state Imk) of mode k. From the identification 
(47) we obtain for the decay function ( 5 )  in section 2 

F(t) = IB12 E ({Ok}I(i] G ( p ) S , +  (Q>I{mk>)(i) 
im k )  

({mk>~(l)s6(Q>uD(P)1{ok})(l) exp(iE[mk}t) (48) 

(49) = IBI2 ( { o k } l ( l )  U ; ( p ) s , f ( Q )  exp(iHpht) sb(Q)uD(p)l{Ok})(i) 
where we have exploited the fact that { I m k ) }  constitutes a complete orthonormal system 
in the vibrational subspace. In this manner we have succeeded in reducing the multi- 
phonon summation (48) to a single expectation value. Invoking the Heisenberg rep- 
resentation of operators O(t) = exp(iHt) O(0) exp( -iHt) and employing equations (20) 
and ( 2 1 )  we may transcribe equation (49) into 

F(t) = /BI2 ( { o k > l ( i ) u ~ ( P ( O ) ) S , ' ( Q < o > ) s , ( e < t > ) u D ( p < t > ) ~ { o k > ) , i , .  (50)  
We can factorise this expression if a,(a) (which is implicit in U ,  viaAk; see equation (33)) 
and am(b) (which defines s,(Q); see equation (27 ) )  are 'symmetry' vectors pertaining to 
different irreducible representations (henceforth assumed): 

F(t)  = I B 1 ' ( { o k > I  ( 1 )  UD( p(0))  UD( p( t ) )  I { o , k } ) ( i ) ( { O k } ~  (1)s; (Q(O>)S6( Q(t>) l { o k } ) ( i )  

We employ the formula of Baker (1905) and Hausdorff (1906): 
(51) 

(52)  exp y exp z = exp(h[y, z ] )  exp(y + z )  if[Y, [ Y ,  211 = 0 = [ z ,  [Y,  211. 
With this formula and using equation (21) we obtain 
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We now employ a special version of the Bloch (1932) formula (Wilcox 1967): 

({ok}lexp [i? ($pk +qkQ!!'Qk)] /{ok})=exp(-iz(IEkl? k + h k l z ) ) .  (54) 

Then the first matrix element in equation (51) simplifies to the form 

In the same way, one can calculate the second matrix element in equation (51): 

1B12({ok}ls,'(Q(o))s,(Q(t))I{ok}) = 4 2 /Bk1zQ2k1 exp(iQkt)* 

We introduce the abbreviations 

u(t) = 4 2 lAkI2Qi3 exp(iQkt) = 4 1 ~ 1 ~  2 52r3 exp(iQkt) 

(56) 
k 

a;(a)q,(k)q; (k)a,(a) 
k k m.n 

(57) 

( 5 8 )  

u( t )  = 4 2 IBkI2Qi1 exp(iQkt) = $ 1 ~ 1 ~  2 Q;' exp(iQkt) E a;(b)q,(k)q; (k)a,(b) 
k k m,n 

where in the second version of both formulae, respectively, definitions (33) and (34) 
have been used. Then 

F(t )  = u( t )  exp[u(t) - u(O)]. 

By use of the identity 
(59) 

we finally may establish the contact with the GF description in section 3 (see (24)) and 
transmute (57) and (58) into 

u(t) = -21AI2 1% d w  exp(iwt) w-' 2 a;(a)a,(a) Im Gm,,(o + ie) (61) 
0 m,n 

u ( t )  = -2lBl2 J d w  exp(iot) o;(b)a,(b) Im G,,,(o + iE) 
m.n 0 

The functions u(t) and u( t )  are the crucial decay functions which govern the non-radiative 
transitions. The function u( t )  represents the promoting-mode dynamics, whereas u(t) is 
a representation of the accepting modes. Both functions tend to zero for t+ CO, but 
the actual evolution in time depends very sensitively on the details of the coupling 
(parameter sets A,  {om(a)}  and B ,  {a,(b)}) and on the dispersion behaviour of Qk 
(parameter set {yd}) ;  see below. 

The main virtue of the GF formulation of the crucial decay functions u(t) and u( t ) ,  
however, consists of calculational options for disturbed lattices, since it allows for the 
application of a Lifshitz procedure, which later traces the disturbed GFS back to undis- 
turbed GFS. This also explains why we have returned to the Cartesian space, since it is 
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in this projection where the Lifshitz procedure works. Moreover, the m, n sums in 
equations (61) and (62) only involve a few terms given by the Cartesian extension of the 
promoting- and accepting-mode coupling constants A am(aj and Bam(6). 

6. One-dimensional visualisation 

We demonstrate the computational technique for a one-dimensional chain of atoms with 
spring interactions between nearest neighbours, next-nearest neighbours, etc. Equation 
(14) then assumes the form 

Hpb = t + tQh yd(xm+d - X m ) ’  (14‘) 

n2, = 2f/M Y1 = 1 Y2 =f’lf Y3 = rllf * * .. (63) 

m m,d 

where 

From this we deduce the dispersion relation 

The eigenvectors (17) now are of simple Bloch form 

q m ( k )  = ( l / T N )  exp[i(2n/N)km] k = 0, k1,. . ., +-NI2 (65) 
and for the symmetry vectors, which characterise the accepting- and promoting-mode 
coupling, respectively, we choose the structure 

- 112 

a(a) = (z a:) (. . ., -am,.  . ., -a2, -a1,0, a1, az, * . ., am,.  . .) 

(Cartesiansitesm:) (. . ., ( -m) ,  . . ., (-2), (-I), (O), (I), (2), . . ., (A), . . .) 

4 6 )  = (z Pb) -’” ( e  * . , Pm7 . . * 7 P 2 ,  P I ,  PO,  P I ,  P z ,  * * * >  P m  , * . .>. 

Upon inserting these in equations (33) and (34) we then find that 

Correspondingly one has for the GF (23) 

and finally with equations (66) and (67) 
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and 

Henceforth we shall use the abbreviations 
a = A(Ca$)-’12 
b = B(L.P$)-1/2. 

7. Transport: Bessel-Hamilton 

In the one-dimensional problem there is a prototype case of decay, which permits an 
exact analytical solution. If we insert equations (71) and (72) into (61) and (62), both 
characteristic functions u ( t )  (even modes) and v ( t )  (odd modes) display decay features 
of a type first considered by Hamilton (1839) a long time ago. To demonstrate this, we 
consider the most simple choices for the intrinsic parameter sets: 

a1 = 1 

Po = 1 p1= -1 p2 = p 3  = .  . . = o  (73) 
Gk = Q D  sin(nk/N) 

a2 = -& a3 = CY4 = .  . . = o  

y 2 = y 3 =  . . . =  0. 
Then (see equations (68) and (69)) 

and equations (71a) and (72a) assume the form 



For equations (61) and (62) we finally obtain 

64 
D k = l  

NI2 

u(t)  = I b 12 - l6 [sin($)]’ exp[i~,tsin/$)]. 
NBD k=O 

(79) 

In the continuum limit (N+ m) the remaining integrals are of the Bessel type and may 
be traced back to the form 

(see Erdelyi et aZ1953, p 35). Exploiting this formula we get for equations (78) and (79) 

u(t) = (4/n)((a12/B2%){2[E,(BDt) + E3(BDt) - ES(nDr> 

+ i[2811(QDt> + $3(BDt) - 9S(QDt)l) (81) 

(82) 

(83) 

u(0) = [(64 x 4)/15n2](ia12/Q$) 

u(t> = (16/b12/nB~){3[E1(QDt) - E3(QDt) -k i[3$l(nDr> - $3(BDt)l). 

In this manner we recognise that the crucial decay functions are superpositions of Bessel- 
type functions and thus display a kind of decay behaviour which Hamilton (1839) had 
found for decay in a classical oscillatory chain. Subsequently, this type of decay was also 
investigated by Havelock (1910), Schrodinger (1914) and Rubin (1960). 

The functions u(t)  and u( t )  are drawn in figures 1 and 2, whereas F(t )  itself is given 
in figure 3. We observe that u(t) and u( t )  display the extended long-time tail of a 
(QDt)-li2-behaVi0Ur which is typical for Bessel functions. In particular, we find the 
asymptotics 

U( t )  = ( 2a2 /n $ a) (ZQ D t )  -3/2 c exp[ i( D t - 3n/4)] 

+ O( (Q D t )  -’) + exp( in /2)0( (~  t )  -’I2) (84) 
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3 a=l.OR, 

-4 

Figure 1. Real part (-) and imaginary part (---) of the characteristic function of the 
promoting-mode evolution u(QDt) (QD/b2) for the accepting-mode coupling strength a = 
1.OQ". 

-4  

Figure 2. Real part (-) and imaginary part (---) of the characteristic function of the 
accepting-mode evolution u(QDf) for the accepting-mode coupling strength a = 1.OQg. 

From figure 3 we notice that the temporal structure does not display a simple damped 
oscillation but a more complicated form. This is also reflected in the spectral structure 
of the self-energy function (equation (4)) S+(w)(= (S(o))*), which is drawn in 
figure 4. 

8. Global analysis of non-radiative decay 

In section 4 we have traced back the self-energy function (4) to two decay functions u(t) 
and v( t ) :  

There is no major difficulty in computing u( t )  and u( t )  in their full detail and to form (at 
F(t) = v ( t )  exp[-u(0) + u(t) ] .  (87) 
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Figure 3. Real part (-) and imaginary part (---) of the decay function F(QDt) (QD/b2)  
for the accepting-mode coupling strength a = 1.0Qg2. F(Q,t) is the Fourier transformation 
of the self-energy function. 

S( w t i t )  I 

Figure 4. Self-energy function S(w + is) for the accepting-mode coupling strength 
a = 1.0Qg2: ---, 'damping function'; -, 'energy shift'. 

least numerically) the Fourier inversion of equation (87). However, for direct physical 
insight it is rather more rewarding to perform a simpler although less accurate, calcu- 
lation. This is provided for by a moment analysis of equation (87), as explained at the 
end of section 2. Inserting equation (87) in (9) we find that 

M, = lim{[d/(i dt)]'u(t) exp[-u(0) + u( t ) ] } .  (88) 

MO 3 ~ ( 0 )  (89) 
MI  = -iri(O) - iMOzi(0) (90) 

t-0 

Employing equations (78) and (79) this yields 
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~2 = M I / M o  - U(O) - Moii(O) - Mo[r j (O) /~o]~  (91) 
which still are exact results. We now introduce the analytic form (8), whose characteristic 
parameters ( M O ,  wo, y) are given by (12) and (13), and upon employing (89)-(91) we 
write 

wo = -i@) - irj(O)/u(O) 

y2 = -U(O)/v(O) - ii(0) - [rj(O)/u(0)]2 

(92) 

(93) 
which determines the functional representation of the self-energy function S(w k ie) via 
equation (1 1): 

S ( o  * ie) = v(O)(w - w o  * 2iy)/(w - wo rt iy)2. (11) 
Inserting this in the decay formula (2) we arrive at 

(Y(O)Y(t)) = &J doexp(-iwt) 
. o c  

--o: 

(w - wo + iy)2 + cc). (94) 
x ( (w  - Eio))(w - coo + iy)2 - u(o)(w - w o  + 2iy) 

In the integrand of this expression the poles are determined by 

(w - E$n))(o - w o  + iy)2 - u(O)(w - w o  + 2iy) = 0 (95) 
and those in the lower half-plane we denote by 

0. = 52. - i r j  j =  1 , 2 , 3  I J  

Qi real, rj positive. In the upper half-plane we have the complex conjugate solution. 
Then from equation (94) 

W(O)y(t)) = [(@I - 00 + iY)2/(wi - W Z ) ( ~ I  - 03)I exP(-iQit) exP(-riItI) 

+ [(U2 - W O  + iYI2/(02 - wi)(w2 - 03)I exP(-iQ2O exP(-rzItI) 

+ [(03 - On + iy12/(03 - wi)(w3 - w2)I ex~(-iQ3t) exp(-rsltl) 
(96) 

and we observe that there are three decay channels. Since the general solutions of the 
third-order equations (95) are rather awkward expressions, we refrain from writing 
them down, but content ourselves with discussing only the physically most interesting 
case when v(0) (i.e. the promoting-mode coupling) is small. Then the approximate 
solution of equation (95) reads 

Q ~ , ~  - i r l , 2  = uo - iy * [iyu(0)/(wo - E:") - i ~ ) ] l / ~  = wo - iy * O ( U ( O ) ~ / ~ )  (97) 

523 = EjO) + O( u(O)/y2) (98) 

r3 = 2y3u(0)/[(Ei0) - w ~ ) ~  + y2I2 (99) 
and the approximate decay evolution (96) follows as 

(Y(O)Y(t)) = [I-i{[iyv(~)] ' /~/(w~ - - iy)3/2} exp(-iwot) exp(-ylt)) 

x sin{t[iyv(O) ( w o  - E ~ O )  + i ~ ) ] ' / ~ }  + exp( -iESo)t) e~p(-r,jtI)]. (100) 
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The first two decay channels in this approximation have merged into one and are 
governed by the decay constant y ,  which is a measure of the accepting-mode coupling 
strength. However, the weight of these channels is small (about [ U ( O ) ] ” ~ ) ) .  It is the third 
channel which normally will be of physical interest and will be analysed in the next 
section. 

9. Interplay of intrinsic dynamical parameters 

In the preceding section we have recognised that the non-radiative decay constant r3 
(see equation (99)) incorporates the quantities coo, y and u(O), which are given by 
equations (89), (92) and (93) and thus via equations (87)-(91) depend on the interplay 
of the parameter set {a,} characterising the accepting-mode coupling, the set {pm}  
characterising the promoting-mode coupling, and the set {yd}  characterising the k- 
dependence of the phonon frequencies Q k .  Because of the large multitude of parameters 
involved, a discussion is only feasible if we restrict ourselves to the four most prominent 
questions. For the present discussion we assume the promoting-mode coupling to be 
small, such that the non-radiative decay constant is given by 

r3 = 2~(0)y’/[(E$~) - wo)2  + y2I2. (99) 

rimax) = 2 ~ ( 0 ) / y  (for = wo) .  (101) 

E$O) = A + iLi(0) (102) 

Eio) = A - w o  - id(O)/u(O) (103) 

wfax = A/2 - id(0)/2~(0). (104) 

From this expression we deduce that r3 is maximal if w o  approaches E:’). Then 

On the other hand, by inserting (68) in (45) we have (see equation (78)) 

and from (92) 

whence the resonance condition for maximal decay, E:’) = w o ,  may be rewritten as 

9.1. The simplest model 

The parameter choice (73) is the simplest. Employing (78) and (79), the elements of 
equations (89), (92) and (93) assume the values 

16 32 
u(0) = - b2 dx  sin3 x = - b2 

Q0n 3nQD 

16 9n d(0) = i - b2 /on’2 dx  sin4 x = i - QDu(0) n 32 

16 
ii(0) = i2 - b2 dx sin5 x = -$Q’,u(O) n 

2 
dx (sin4x - sin6x) = i-a2 

Q’, 
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n,n;* 
\ 

,---._ ,,/ '. 

/ ,  
>/ / / (  Figure 5. Dispersion relation Bk of the one- 

dimensional lattice in the harmonic approxi- 
mation for the elastic coupling with nearest 
(spring constant f )  and next-nearest (spring 
constant f ' ) :  curve A, y 2  = f'/f = 0; curve B,  
y z  = 0.1; curve C ,  y z  = 0.4; curve D, y 2  = 0.8. 0 ,5N rrkN-' 

83 a2 
dx  (sin5 x - sin7 x )  = - . (109) 

J t Q D  3 x 5 x 7 n Q D  

Then from (92)  and (93) 

Y 2  = Yfa .0 )  + Yfb .0 )  

E$') = A - ( 2 a 2 / Q h )  

where 

w&b,o) = (9n/32)QD = 2a2 /~22 ,  

y fb ,O)  = [% + ( 9 ~ / 3 2 ) ~ ] Q h  ~ f 0 . 0 )  = (512/105n) (a2/QD). 
From equations (105)-( 107) we can only deduce that v (0 )  is large if the promoting-mode 
coupling is large. Equations (110) and ( l l l ) ,  however, show that the relative promoting- 
mode influence is larger on coo than on y2.  It may be neglected if the dimensionless 
accepting-mode coupling is large: a 2 / Q h  S 1. Then, both coo and y 2  grow in proportion 
to the accepting-mode coupling strength a 2 / Q h  and the maximal decay constant (see 
equation (101)) takes on the value 

rimax) = 5.45 b 2 / a G  (for a 2 / Q h  s 1) .  (113) 

9.2. Extended lattice interaction (ideal) 

We now investigate the influence of modified transport properties within the host lattice. 
We still keep to ideal lattice dynamics, but we change the phonon dispersion by allowing 
for next-nearest-neighbour spring constants. Thus we choose the set 

{ Y d }  = (Q2,/2>{1, Y 2 , 0 , .  . . 9  0) 

Q~ = Q~ /sin(nk/N)I[I + 47, ~ o s ~ ( n k / ~ ) ] ' / ~ .  

( 114) 

(115) 

which yields for the lattice frequencies (see equation (64)) 

This dispersion relation is drawn in figure 5 for different y2-values. It is noted that the 
phonon group velocities are remarkably changed in all k-regions. The other two intrinsic 
parameter sets, {am} and {p,}, are again chosen as before (see (73)) .  We then may 
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perform the computational steps which are equivalent to those of equations (104)-( 1 l l ) ,  
and we find that 

0 0  ( 9 ~ / 3 2  + 2a2/Q23D)QD + [(9~d/32) 4 - (2a2/s23,) i ] y 2 Q D  + O(Q;z,y$) ( i i6 )  

(117) 

(118) 

(119) 

y 2  = [$ + (9n/32)2 + 512a2/105n] QD 

+ 4[% + 9n/320 - (512a2/105n) 4]y2Q2, + O(Q;22,yi) 

E!') = A - (2a2/Q&)(1 - qy2) + O ( Q D y z )  

rimax) = (1 - & y 2 ) 5 . 4 5 b 2 / a ~  + ~ ( y $ )  

and for a 2 / Q ;  9 1 the maximal decay constant (see equation (101)) reads 

(for a2/Q3, s=- 1). 

Disregarding for the moment the oversimplified nature of the model, this result would 
allow for the physical interpretation that non-radiative decay is slowing down if the 
locally created oscillatory energy is not transported away from the centre quickly enough. 

9.3. Spatially extended promoting-mode coupling 

We now leave the intrinsic sets {am} and {Yd} unchanged (see equation (73)) but assume 
the promoting-mode coupling to reach farther into the surrounding medium: 

P o  = 1 P I  = o  p2 = -1 p3 = p4 = * . * = 0. (120) 

We may thus perform the computation very much along the lines given in the preceding 
two case studies and arrive at the results 

= w6".o) wbb) = 0.7290&~3~) (121) 

Yfa)  = yta,o) y&) = t(0.99) + ( 9 ~ ~ / 3 2 ) ~ 0 . 5 3  (122) 
Ejo) = A - (2/Qk)a2 (123) 

rimax) = i.37r$max)((p2 = 0 )  (for a2/Q3, 9 1) (124) 
which again are given in the simplified form pertaining to a 2 / Q L  9 1. We thus find a 
sensibly increased decay with respect to that in section 9.1. 

9.4. Spatially extended accepting-mode coupling 

Finally, we may consider a longer spatial extension in the set {(U,} of accepting-mode 
coupling parameters: 

CY1 = 1 (y* = -3 a3 = Q  a4 = ( ~ 5  = . . . = 0 (125) 

leaving {Pm} and {yd} as in the case in section 9.1 (equation (73)). Then computation 
along the preceding lines yields 

(126) 

y f o )  = y f ~ , O ) ~  Y t b )  = ytb,O) (127) 
E!') = A - (2a2/Q&)0.58 (128) 

rimax) = o . 9 2 r p a x ) ( ~ ,  = 0 )  (for a2/Q3, 9 1) (129) 

up) = 06"*~)0.58 whb) = Ohb,o)  

which is a slightly diminished maximal decay than in the case in section 9.1. 
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10. Summary and remarks 

We have presented a GF formalism of non-radiative decay, which is derived by means of 
a Fan-Bixon-Jortner concept of decay. Our formalism allows investigation of the 
influence of spatial coupling peculiarities as well as lattice dynamical properties on the 
decay. 

The results, which we deduce from our calculation of prototypical examples, may be 
summarised as follows. If the range of the elastic coupling within the ideal host is spatially 
extended (second-neighbour springs, etc) , the phonon transport properties deteriorate. 
This is reflected in a slowing down of non-radiative decay. A slightly slowing down is 
also achieved via a spatial extension of the range of accepting-mode coupling. On the 
other hand, a pronounced increase is initiated if the promoting-mode coupling involves 
the more distant neighbour atoms. 

The formalism is given in such a manner that the relevant evolution functions are 
traced back to standard GFS of lattice dynamics. Thus, also defects within the intrinsic 
parameter sets of the lattice (masses and spring constants) are easily handled within the 
well known Lifshitz procedure. For brevity we have not included computations with 
disturbances in the internal dynamics of the host lattice. This will be given elsewhere. 
In the further theoretical development it is desirable to calculate also the ‘hot’ relaxation 
process within our Bixon-Jortner concept. This is left to future work. 
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